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BAYESIAN ANALYSIS OF ARMA PROCESSES: COMPLETE SAMPLING BASED
INFERENCE UNDER FULL LIKELIHOODS

John Marriott, Nalini Ravishanker, Alan Gelfand
and

Jeffrey Pai*

Abstract

For a general stationary and invertible ARMA (p,q) process, we show how to carry
out a fully Bayesian analysis. Our approach is through the use of sampling based methods
involving three movel aspects. First the constraints on the parameter space arising from
the stationarity and invertibility conditions are handled by a convenient reparametrization
to all of Euclidean (p+q)-space. Second, required sampling is facilitated by the
introduction of latent variables which, though increasing the dimensionality of the
problem, greatly simplifies the evaluation of the likelihood. Third, the particular sampling
based approach used is a Markov chain Monte Carlo method which is a hybrid of the Gibbs
sampler and the Metropolis algorithm. We also briefly show how straightfcrwardly the
sampling based approach accommodates missing observations, outlier detection, prediction

and model determination. Finally we illustrate the approach with two examples.

Keywords:  Gibbs sempler, invertibility, latent variables, Metropolis algorithm, missing

values, outliers, prediction, stationarity.




1. Introduction

Autoregressive moving average models constitute a broad class of parsimonious time
series processes which are useful in descﬁbing a wide variety of time series. In particular,
the process {zt} is said to be an autoregressive moving average process of order p, q,
ARMA (p, q), with mean p, if it is generated by

#(B)(z,-4) = (B)e, (1)
where B is the backward shift operator, Bkzt =z_,, {€,} is a Gaussian white noise process
with variance o®, ¢(B) =1 - ¢,B — --- — ¢BP and §(B) =1 - §;B— .- — 6B are
polynomials in B of degrees p and q respectively.

For the process to be stationary the roots of ¢(B) = 0 must lie outside the unit
circle and if the roots of §(B) = 0 also lie outside the unit circle the process is said to be
invertible, in which case there is a unique model corresponding to the likelihood function.
It may be argued (Box and Jenkins, 1976) that, in forecasting, a nonstationary process is
undesirable and a noninvertible process is meaningless.

If the stationarity and invertibility conditions are to be satisfied, the parameter
vectors, ¢ = (¢;,---,4,) and 8= (,,-- *,0,), are constrained to lie in regions C_ and Cys
respectively, corresponding to the polynomial operator root conditions. Allowable values of
(@, 0) then lie in CxC,, the forms of which are simple to identify for p<2, q<2. However
for k>2 the form of C, becomes complicated and for k>4 the polynomial equations ¢(B) =
0 and 6(B) = 0 cannot, in general, be solved analytically.

In a Bayesian setting, for a stationary invertible ARMA (p,q) time series model of
the form (1), the region C xC, determines the ranges of integration for obtaining joint and
marginal distributions of the parameters and for evaluating posterior expected values.
Historically, Bayesian analysis of these 'mddéls'ignores this region in order to obtain
convenient distributional results for the posterior densities. See, e.g., Zellner (1971), Box

and Jenkins (1976), Broemeling (1985), Broemeling and Shaaraway (1988). Only Monahan




(1983) and Marriott and Smith (1992) have restricted the analysis to CxC, employing
analytic numerical integration techniques. Monahan’s calculations used fixed point
quadrature rules for p+q<2 while Marriott and Smith extended these results using the
Gauss—Hermite rules described in Smith et. al. (1987). Generally, to accurately perform
such numerical integration requires specialist software and expertise and typically, for a
model with unknown p and o, becomes infeasible for p+q24.

We propose the use of sampling based methods to obtain desired marginal
posteriors. In particular, the introduction of the Gibbs sampler as a tool for Bayesian
calculations in Gelfand and Smith (1990) has spurred considerable interest in Markov chain
Monte Carlo methods. We use a variant of the Gibbs sampler described in Miller (1991).
Recently Chib (1991) and Chib and Greenberg (1992) have utilized the Gibbs sampler for
Bayesian analysis of AR and MA processes. Their work differs from ours in several ways.
Most notably, in the first of these papers the conditional likelihood is used while in the
second a computationally expensive form of the unconditional likelihood is used. In neither
paper is the full ARMA model handled. Proposed sampling from complete conditionals for
¢ and @ requires a "double rejection" method. In our early work we abandoned such
sampling as terribly inefficient for larger p and q. We also note that McCrlloch and Tsay
(1991) have employed the Gibbs sampler for 2 Bayesian analysis of autoregressive processes
again ignoring stationarity restrictions. Carlin, Polson and Stoffer (1992) use the Gibbs
sampler for Bayesian analysis of first order dynamic models also without concern for
stationarity.

The outline of the paper then is as follows. In Section 2 we give the ARMA
likelihoods in a form well suited for our Monte Carlo method. In Section 3 we obtain the
complete conditional distributions required for the Gibbs sampler. Section 4 provides a
useful transformation to enable us to handle the stationarity and invertibility constraints.

Section 5 describes a modified Gibbs sampler which works well for time series models with




Gaussian error. Section 6, 7 and 8 briefly deal with the issues of missing data, prediction

and model determination. Finally Section 9 analyzes two interesting data sets.

2. Likelihood forms

In Section 2.1 we note that the likelihood for the general ARMA (p,q) model can be
written in a relatively simple form by conditioning upon the unobserved history of the
process. This form is inexpensive to evaluate making it attractive for use with the Gibbs
sampler. In Section 2.2 we observe that for the pure autoregressive process, AR(p), we can
marginalize over this history resulting in a lower dimensional likelihood which can still be

evaluated cheaply.

2.1 The general ARMA (p,q) likelihood

For the general ARMA (p,q) model in (1) the form of the exact likelihood is known
(Newbold, 1974). While in theory it is possible to work with this form, its evaluaticn,
unless the sample size is very small, is computationally very expensive rendering it
infeasible for use with a Monte Carlo approach. A form for the likelihood which is well
suited for sampling based techniques can be developed by introducing latent variables
(parameters). Dimensionality of the parameter space is increased in exchange for a
manageable likelihood.

Letting y, = z, - p, (1) can be written as

§ % ) (2)
T =1 #i¥0i" j=1 1 it

Hence we denote the likelihood for n observations £ = (z,, ---, 2, ) by f(z;' ¥) where
y=1(4 0, p, &) with ¢ = (¢,,-++,4,) and 8 = (6,,---,0.). We introduce as latent

)

variables the unobserved history y, = (y,, Y.p ot yl_p) and €, = (¢, €, =, €-q




resulting in the augmented parameter vector ¥* = (y,, ¢, ¢, 0, 4, 02) of dimension

2(p+q+1). The conditional likelihood is then obtained from the factorization
f(z| ¥*) = 1(z, | ¥*) 1(z, |2, ¥*) --- K(z)|2,, -~ 2, ¥)

2\-3 1 1 9
=(210") Texp {-—=, T (y,-1)’} (3)
20° t=1

where _g ¢y1 _2 e,

i=1 i i=1 i

g t;l p g

I 2 é; ytx"l_:_l i(.‘/’t_i'll't_i)-i=t 0iet_i fort=2,:-+,q

P

and ”t=.2 ¢i y"i_°21 0i(yt‘i_“t-i) fort=q+1’,._’n
j=

2.2 The general AR(p) likelihood
In the special case of an AR(p) process (AB) = 1) latent variables are not needed.

We have ¢ = (¢, p, 02) and the exact likelihood can be factored, analogous to (3), as

n| I -4 n
f(z|¢)=(zw)"[n ] ef-4 3 ()4} (@

p
In (4), 4, =0, 021 = '2 ¢§70+ 2 I ¢, ¢; g/ +a while for t = 2,- - p
1<i<j<p
t-1
p,= X ¢yt " a"; = E¢J7 + 2 X ¢¢7 .t o’ and for t = p+1,---,n,
=1 = t<i<j<p
_ g 2 _ 2
m=2 by =7
=1
Here 7,,k =0, 1, 2, --- is the autocovariance of the AR(p) process of lag k. Using

Yo = "2/(1‘¢1 py -9, p,), We can write




2 P
2 o 2 2
_ Y 2 +2% 6 6

and fort = 2,---,p

ai:T. 62_._ I!,)¢}5§+2 T 4,90 . + 0
@1py ==y Py |j=t ictej I

'y.
where p; = 7’- , 50 that, for all t, a% is of the form ¢* c,- The p;’s can be obtained in terms
0

of the ¢, ’s using McLeod’s (1975, 1977) algorithm.

3. Complete conditional distributions

Given a prior distribution on ¢*, 7(4*) the posterior density for ¢*

(¥ ]3) « f(z] ¥*) - 2(9*) (5)
Bayesian inference proceeds by obtaining marginal posterior distributions of the
components of ¢* as well as features of these distributions.

The Gibbs sampler introduced by Gelfand and Smith (1990) as a tool for carrying
out Bayesian calculations is a Markovian updating scheme which requires sampling from
the complete conditional distributions associated with ¢ (see e.g., Gelfand and Smith or
Gelfand et. al., 1990, for details). A key point is that each complete conditional density is
also proportional to the right side of (5). In certﬁn cases, we may recognize this form as
that of a standard distribution. In more challenging cases, it emerges only as a non
standard, non normalized density. We shall see that, for the Bayesian models in (5), the
complete conditional distributions for 4 and o’ illustrate the former case with ¢ and @
illustrating the latter.

In the general ARMA (p,q) case it is tempting to consider a noninformative prior
specification for ¢*, x(¢¥*) a o2 Unfortunately such specification yields posterior

distributions for y, and ¢, which are improper. (This may be readily seen from




straightforward calculations for, say, an ARMA (1,0) model). Rather, since the y, and ¢
are, in fact, like y, and ¢, respectively, their prior specification should be a proper
distribution given ¢. Hence the prior for ¢* takes the form
n(¢*) = 7(3y, €1 9¥) - =(¥)
where we can assume a noninformative specification for #(¥), i.e., 7(¢) a o >.
Indeed, Newbold (1974, p. 424) presents the choice of x(y,, ¢,|¥) which, upon
integration over y, and ¢, yields the previously mentioned exact likelihood. It is a
multivariate normal with mean 0 and covariance matrix A arising from the stationary
ARMA process.  Working with the (p+q)x(p+q) matrix A presents the same
computational problem as working with the exact likelihood. We make a simplification
which, on both intuitive and empirical grounds, little affects inference about ¥ or forecasts.
I 0

Yo pxp

2
0 4 Iq,‘q

We replace A with { = where y, is the variance of the stationary ARMA

(p,q) process and o® is the assumed error variance. Thus, the joint posterior density for ¢*
is
- n+2 1 n
¥*|z) a (¢®)7 7 exp{- 522 tzl(yt-#t)z} (Yo €1 ¥) (6)
o t=
with p, defined below (3).

With a little manipulation, we may show that the complete conditional distribution

n 2
for u is normal with mean 1y (z, - u,) and variance Z_ and that for o° it is inverse

o, n

n
Gamma, i.e., IG(;-, % X (yt-ut)2). We note that a constant mean y for the z’s need not
t=1

be assumed. Rather, for observation z, we could replace u with xTﬂ where x is a vector of
covariates. No complications to the sampling—based approach result; the normal complete
conditional distribution for u is replaced by a multivariate normal complete conditional
distribution for . The complete conditional densities for the ¢;’s and Oj ’s are proportional

to (6) and must be sampled subject to the restriction to CxC,. We develop an efficient




sampling procedure in Section 5. The complete conditional distributions of the latent

variables €. and y,.; can be shown to all be normal. However calculation of means and

variances requires complicated bookkeeping as the expressions involve summations over

t=1,2, --, n with individual terms having forms which change according to the values of
t, j, p and q. To ameliorate the programming burden we have found it easier to again just
work with (6).

In the purely autoregressive case, AR(p), the noninformative prior #(¢, 4, 0'2) ad

can be used. From (4) we can see that u is conditionally normal with mean

-1 -1
n n (z,—,) n
[E ——IJ ) tztandvariance[ —1]
t=1

t=1 af gy t=1 af

and that

f(o* | ¢, 4, z)a(02);miﬂexp{‘ “15[% g [y;:“t]z]}

o° " t=1
which is an inverse Gamma density, where the c, are defined below (4). However, as in the

general ARMA case, sampling the ¢; subject to the stationarity restrictions is not routine.

4. A useful reparametrization

Consider, first, the pure autoregressive model. The constrained parameter region
for ¢, C,, is analytically intractable for p>4. To complicate matters further, the Gibbs
sampler requires cross—sections of C., that is, sets for ¢j given ¢;, i#j. To circumvent the
problem of dealing with these parameter constraints, we consider successive
transformations from C_to a p—dimensional hypercube and then to RP. In particular,
Barndorff—-Nielsen and Schou (1973) reparametrize ¢ in terms of the partial
autocorrelations r; of the AR(p) process. This transformation which is one-to—one is

defined by




4 =,

(lk) _ (lk 1 _ k¢l(:kx“ =10 k-1 (1
where ¢ = (¢,",--- (p)), ¢(p) being the j'" coefficient from an AR(p) process and
r=(ry,--,r,). Monahan (1984) reports the inverse transformation in the iterative form

(k D _ (¢(k) (k) (k))/(l (¢(k)) ) i=12,- k-1 8)
and the Jacobian
J -ku (1-r2)[(k-1)/2] [pxlx ](1 1y;) ©)
= j=1

The condition that ¢ € C, now becomes |r |<1. We, then apply a second
transformation from r to r* € RP. Based ca the experience of other authors, for example,
Smith et. al. (1987), we use the "Fisher—type" transformation discussed in Marriott and

Smith (1992) which performs best for densities with "normal shapes" or mixtures of such

1+IJ
=1,--p.

shapes:

= log|——~
1- I,

We would do all of the random generation in the space of the r}’s inverting the r*’s back to

¢'s at the end.

The complete conditional density for r}‘ arises by transforming the nonnormalized
joint density (5) from (¢, p, o°) to (r*, g, 0°) and considering the resulting expression as a
function of r}‘ with r%, i#j, 4 and o® fixed. We denote this nonnormalized complete
conditional form by f(r}‘ | %, i#], p, 02).

For the general ARMA model, assuming invertibility and statiorarity, we must, in
addition, generate 6,'s from their complete conditional distributions, restricting 8 to Cq
Monahan (1984) has shown that the above two—stage transformation can also be used for
the moving average parameters. We merely replace ¢ with 6 and p with q. Applying the
transformation to both ¢ and @ results in a transformation from (¢,6) € CxC, to say
(r(’;, rp) € RP™.
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5. Efficient sampling; a modified Gibbs sampler

The standard Gibbs sampler (see Section 3) proceeds by making draws from the
complete conditional distributions in some systematic order. When these distributions are
familiar forms sampling is routine. When this is not so (and when the complete conditional
density does not have special properties such as log concavity) a variety of general
techniques have been proposed. These include approximate c.d.f. inversion (as in Tanner,
1991), ratio—of—uniforms (as in Waiefield, Gelfand and Smith, 1991) and adaptive
mixtures (as in West, 1992).

An alternative which we employ here, for each such nonroutine draw, runs a scalar
valued Markov chain Monte Carlo algorithm whose stationary distribution is the desired
complete conditional. Miiller (1991) proves that, under mild conditions, use of such
univariate trajectories within a trajectory of the Gibbs sampler results in a Markov chain
whose stationary distribution is the desired joint posterior distribution.

More precisely, in our present case suppose we use Ansley’s (1979) algorithm to
obtain the MLE for ¢ and @ say (7¢, 0) with associated asymptotic covariance matrix
2( 3, 0) Using the transformation of Section 4 we convert (¢, b) to, say, (iz, i’z,) and, via
the delta method obtain an approximation to the covariance matrix of (i'(’;), i;) which we

denote by Z*. Let gp’q(rz, 1}) be the multivariate normal distribution over RP"® having

mean (i;S’ i’a) and covariance matrix X*. For any coordinate r} (from either rz or r’g) let
g(r}‘lr‘{.j,) denote its univariate conditional normal distribution given all of the other r*’s

derived from Bpeq

We now take g(r}|r{.;,) to be a Gaussian proposal for a univariate Metropolis
algorithm. That is, we create the following Markov chain. If the current value of IT=1u
and a draw from 8(‘}'] {,)) ylelds v, we calculate the ratio

ofu,v) = f(v|r?, i¢j, u, 6®)/f(u|r?, itj, u, o). If @>1 we move to v; if a<1 we move to v
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with probability a. It may be straight forwardly demonstrated that the stationary
distribution of this Markov chain is the normalized density associated with
f(r}‘|r"i‘, i#j, u, 02) (see, e.g., Hastings, 1970 or Tierney, 1991). An iteration of this
modified Gibbs sampler is thus implemented by, starting with r%, running the associated
Markov chain for m steps, taking the state of r¥ at the m' step as the updated value and
then proceeding to r¥, etc. After all the r}‘ have been updated we draw g, then o’, then Yo
and then ¢, to complete one iteration.

This hybrid algorithm is attractive in our case because the fs tend to be unimodal
and roughly normal making the Gaussian proposal we are using efficient. Empirical
experience has shown that this algorithm is readily automated and requires far fewer
likelihood evaluations than the previously mentioned techniques resulting in substantially
shorter run times.

To initiate indcpendent parallel replication of the sampler we perturb the MLE (iz,
i b &°) obtaining a total of m, starting values (we use m, = 40). After proceeding for
k, iterations with these m, replications, by resampling we increase m, to m, replications
(we use m,=200). We proceed for k, further iterations with the m, replications,
monitoring the stability of selected quantiles to judge when convergence may be assumed.
Finally we increase m, to m, replications (we uée m, = 500). The sampler is then run for
k, further iterations before termination. See Gelfand and Smith, (1990) and Gelfand et al.
(1990) for further discussion of such sampling schedules.

In concluding this section we mention an alternative approach for sampling the ¢'s
and s based upon an idea in Jones (1987). Jones observes that, for instance, ¢ may be
drawn uniformly over C, by drawing r according to a product Beta distribution over the
hypercube |r; | <1, j=1,2,---,p. Using ideas in Smith and Gelfand (1992), for given x and
o*, such ¢’s may then be resampled to essentially have the distribution (4|, o, z).

However, this resampling would have to be done for each iteration within each replication
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of the Gibbs sampler (i.e. for each new p, o° pair). We believe that this method would be

a very inefficient competitor to our sampling scheme.

6. Missing Values and Outliers

In this section, we propose the use of the sampling based approach to handle missing
values and to aetect outliers in an ARMA(p,q) process. This is done by treating such a
value, say z, as an unknown and adding it as a parameter to the Gibbs sampler. The

complete conditional distribution for z_, f(z |z » ¥*), is proportional to the right side of

(6) and in fact is a normal distribution with mean and variance having forms similar to

those for the y - Alternatively, a convenient Gaussian proposal is the conditional
distribution {(z_ |z, ,-- - 2., ¥*)in (3). A natural candidate for a starting value z(ro’ is the

mean of the available z, or perhaps an interpolated value using adjacent observed z’s. We
perturb z;m to obtain m, starting values for the m, initiations of the sampler. An
iteration of the Gibbs sampler then proceeds as discussed in Section 5 geixerating, in
addition, a z,. It is straightforward to extend this procedure to the situation with several

missing values or outliers.

7. Prediction
In a Bayesian analysis of ARMA models, prediction proceeds via the predictive
density

{(zp|2) = [(zp|3, ¥*) - 2(9*|5) dyp* (10)
where f(s;|¥* 3) is the density of the future data z;. If 5; = (2, - 2,,.) then
f(z |2, ¥*) = i(z ,, |3 ¢) - f(z 12,8 ¥) - iz, 12,,2,,..,» % ¥*) Theuse

of (10) contrasts sharply with the non—Bayesian practice in time series analysis of basing

forecasts on a particular set of estimated parameter values, i.é., on f(z |z, &t*). It is well
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known (see e.g. Carlin and Gelfand (1990)) that although point estimates arising from
f(z¢ | 2, ¥*) perform well, interval estimates will generally be too short, the variance of this
distribution too small. In fact there is recent literature on correcting for this effect by
incorporating the variability due to parameter estimation into the prediction mean square
error (Stine, 1987).

In studying (10) the sampling based approach again fits nicely. Using the output of

the Gibbs Sampler, #fj" , j=1,-+-,m, an approximation to the density itself may be obtained

as the Monte Carlo integration

. 1
J=
To obtain a sample of predictions from the density (10), for each ¢} we draw z_ ; from

f(z¢ |2, ¥} ).

8. Model determination

Model determination involves two aspects — model choice (selection amongst
models) and model adequacy (performance of a particular model). Bayesian assessment of
model adequacy resides in predictive distributions by which comparison is made between
what the model predicts and what was observed. (In fact most any model evaluation
scheme relies on such comparison).

For pairwise choice between models the formal Bayes criterion requires calculation
of the Bayes factor (ratio of predictive distributions) adjusted by a weight which can be
regarded as the prior odds associated with the models. Poskitt and Tremayne (1983) nicely
unify such Bayesian model selection for time series models in showing that various
established criteria, e.g., AIC, BIC, ¢ and S may be viewed as approximate Bayes factors
adjusted by weights reflecting sample size and model dimension. Unfortunately, with
improper priors on the parameters (as in our case) predictive distributions become

improper so that interpretation of the Bayes factor is unclear. Possible remedies involve
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utilizing the predictive distribution in a different form. See Gelfand, Dey and Chang
(1992) for a recent discussion as well as for ad hoc criteria compatible with the
sampling—based approach we have adopted here.

Perhaps more importantly, we would prefer that model selection not be based upon
a single number. Rather, we would prefer to compare the predictive performance of
competing models at each time point. Hence we propose to look at the predictive
distribution for the eﬁtire series given what we have observed. More specifically if the
) and we wish to predict a replication of the

observed series is 3 7z

bs (zl,obs’ “ n,obs

series z = (z,, ---, z;l ) given z | (and a particular ARMA model) then the predictive
distribution of 2 given z | _is, analogous to (10),

f(alz, ) = [1a]¥*) n(¥*]s,) (12)

To draw samples from f(zlzobs) we need only draw ¢* from »(¢¥*|z_ ) and then, given ¥*,

b

draw z from f(z|¢*). The output of our modified Gibbs sampler provides a sample ¥t
j=1, + -+, m from the posterior. Given dz}‘, z; can be drawn sequentially using (3).

Comparison of the sampled z’s, j=1, -+, m with 5, Can be done in many ways.

b
We view such comparison in a diagnostic fashion eschewing formal inference. In particular
an appealing graphical display, which is used for the examples of Section 9, may be created

as follows. If 5, ~ f(zlzobs) then the t'" component of %, z;, ~ iz, |zobs) the predictive

jt
distribution at the t*" time point. Suppose we use the sample {zj ¢ 3=1, - -+, m} to obtain
E(z, Izobs) and var(z, |zobs) and plot |zt’0bs ~ E(z, l’obs)l v§ /’Ta.r(?ﬁ:;)'.

This display reveals model adequacy via a point cloud close to the origin, i.e.,
predictive distributions have small dispersion and the observations are consonant with
these distributions. Furthermore, all points lying below the line y=2x on this plot are such
that the observed y roughly falls within a 95% predictive interval. Outlying observations
will lie well above this line. Extending these ideas, the display becomes an informal model
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choice plot. In particular, suppose we are comparing nested models. As we run through a
portfolio of nested models, with increasing dimensionality, we expect to pass from say a
poor model to a satisfactory parsimonious choice to an overfitted one. This will be
manifested in the display as follows. The poor model will perform badly on both the x and
y scales, the satisfactory parsimonious model will perform well on both scales, the
overfitted model will perform well on the y scale but will yield less concentrated predictive
distributions than the parsimonious one and hence do worse on the x scale. The same
principles should guide choice between two nonnested models, e.g., ARMA (3,5) vs. ARMA
(4,2) — the one with the point cloud closer to the origin is preferred. When the two clouds
overlap considerably choice between models is unclear. This recognition seems preferable
to a decision based upon a single number. Returning to nested models, an alternative
informal model selection approach looks at the posterior distribution of the "discrepancy"
parameters, i.e., the parameters in the full model which are not in the reduced model. For
instance, in comparing an ARMA (3,3) with an ARMA (2,3), we would examine the
posterior distribution of ¢, by using the generated ¢, j» =1, +--, m to see where 0 falls.
Again, we illustrate the use of these model determination tools in conjunction with the

examples of the next section.

9. IMustrative Examples

We present two examples to illustrate our methodology. Example 1 consists of the
quarterly seasonally adjusted U.S. unemployment rate between 1948—1972 (Fuller, 1976), a
series of n=100 observations. We model this data by autoregressive processes. AR(p)
models, 1<p<5 have been fitted by Shumway (1988), and the AR(2) model was selected as a
best parsimonious choice since.the maximum likelihood estimates of ¢,, ¢, and ¢, are not
significantly different from 0. Using the likelihood in (4) we present here the results from
an exact Bayesian analysis. In Table 1 we fit the AR(1) model based on the first 96

observations, the last 4 observations being held out for forecast evaluation. The maximum




16

likelihood estimates for the parameters, from which the Gibbs sampler is started, are
obtained by the Ansley algorithm. Table 1 presents the MLE’s together with their
standard errors. Also given are the mean and standard derivation as well as selected
percentiles of the marginal posterior distributions for the parameters obtained from the
Gibbs sampler. We note that the values at the 50 percentile for the ¢,, p and o
correspond closely to the MLE's. The extreme percen_tiles enable equal tail Bayesian
interval estimates.

Similarly, Tables 25 present the results of fitting the AR(2), AR(3), AR(4) and
AR(5) models respectively. Interval estimates for the parameters ¢, ¢, and ¢
comfortably contain 0, enabling selection of the AR(2) model. For this model we also
present in Table 2, results from assuming 0, 1, 5 and 20 percent of the n=96 observations
as missing. As in Section 6, we treat the missing observations as parameters along with
Gy &9yt o®. Inference seems to be little affected even with as much as 20% missing data.
Table 6 presents the forecasts for the data modeled by AR(2) model, as described in
Section 7, for t=97, 98, ---, 100. Figure 1 presents a display of the type described in
Section 8 showing the AR(1), AR(2) and AR(5) models. Clearly the AR(1) model is poor
with the AR(2) and AR(5) models quite similar.

The data for the second example are the logarithms (base 10) of the Canadian lynx
trap counts over a 114 year period (1821-1934). This series has been modeled in the
literature by, e.g., Priestley (1981) and Tong (1977). In the class of ARMA models, the
AR(2), AR(11) and ARMA (3,3) models have been discussed. Note that there is no
nesting between the latter two. The fits for the AR(2) and AR(11) were obtained
analogously to those in the first example and are presented in Tables 7 and 8 respectively.
The ARMA (3,3) model was fit using the likelihood in (6) with results given in Table 9.
Finally Figure 2 presents a display of the type discussed in Section 8. The AR(11) appears
preferable to the AR(2) but the AR(3,3) seems the best of the three.
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